
AD-RI54 377 A PRALLELIZED POINT SUCCESSIVE OVER-RELAXATION METHOD inI
ON A MULTIPLE INST.. (U) ARMY BALLISTIC RESEARCH LAB
ABERDEEN PROVING GROUND "D N R PATEL ET AL. NOV 84

UNCLSSIFIED BRL-MR-341l SBI-RD-F366 539 F/G 9/2 ML

I lflflfflfllfl..flfl

Slfllllll.fff.

_71 7.17 .7-.

J~-g

111111.0 IL5 280j~jj=VA 122
- EM 1_.2

Q-

1111 .4' 1** IuI

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS -1963-A

.

AD-A 154 377B
MEMORANDUM REPORT BRL-MR-3411

R0

' L

A PARALLELIZED POINT SUCCESSIVE
OVER-RELAXATION METHOD ON A

MULTIPLE INSTRUCTION MULTIPLE
DATA STREAM COMPUTER

Nisheeth R. Patel DTIC
Walter B. Sturek ELECE
Harry F. Jordan

JUN 3 185

November 1984 B.

gotC FILE COB~ -MMF A A~f NMMUAT

US ARMY BALLISTIC RESEARCH LABORATORYI
ABERDEEN PROVING GROUND, MARYLAND

2 -.

85 5 28 204 k

~~. -,= ...,.__ _ _ -L - , ._ , _,=... . . • . -,-. ... +.

Destroy this report when it is no longer needed.
Do not return it to the originator.

Additional copies of this report may be obtained
from the National Technical Information Service,
U. S. Department of Commerce, Springfield, Virginia
22161.

The findings in this report are not to be construed as an official
Department of the Army position, unless so designated by other
authorized documents.

The use of trade names or manufacturers' names in this report
does not constitute indorsement of any comercial product.

UNbbtILU
SECURITY CLASSIFICATION OF THIS PAGE (When Dae Entered ""READ INSTRUCTIONS"

REPORT DOCMENTATION PAGE BEFORE COMPLETING FORK
1. REPORT NUMBER 12. GOVT ACCESSION NO S. RECIPIENT'S CATALOG NUMBER

MEMORANDUM REPORT BRL-MR-3411 04 5-/y ,1?
4. TITLE (eOd Subtitle) S. TYPE OF REPORT & PERIOD COVERED

A PARALLELIZED POINT SUCCESSIVE OVER-RELAXATION
METHOD ON A MULTIPLE INSTRUCTION MULTIPLE DATA S. PERFORMINGORO. REPORT NUMBER

"" STREAM COMPUTER
7. AUTHORs.) S. CONTRACT OR GRANT NUMEERe)

Nisheeth R. Patel*
Walter B. Sturek
Harry F. Jordanl**

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASKAREA & WORK UNIT NUMBERS

U.S. Army Ballistic Research Laboratory
ATTN: AMXBR-LFD RDT&E 1L161102AH43
Aberdeen Proving Ground, Maryland 21005-5066

11. CONTROLLING OFFICE NAME AND ADDRESS I. REPORT DATE

U.S. Army Ballistic Research Laboratory November 1984
ATTN: AMXBR-OD-ST is. NUatER OF PAGES
Aberdeen Proving Ground, Maryland 21005-5066 39
14. MONITORING AGENCY NAME ADDRESS(I different foom Controllin5 Office) IS. SECURITY CLASS. (of thli report)

Unclassified
ISA. DECL ASSI FIC ATION/ DOWN GRADING

SCHEDULE

1S. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release, distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered In Bock 20, If different Iee Report)

* IS. SUPPLEMENTARY NOTES
This report supersedes IMR No. 811, dated April 1984.

*"University of Colorado *Under contract to National
Electrical and Computer Engineering Department Research Council
Loulder, CO 80309

IS. KEY WORDS (Continue en reerse ide it neceesay end identify by Mock number)

Parallelized Point Relaxation Method Successive Over-Relaxation Method
Parallel Processing MIMD
Rowwise Natural Ordering Multiprocessor

211. ATRAcr (ae em evere N aenseem aid etity by wloc nmobei

A parallelized point rowwise Successive Over-Relaxation (SOR) iterative
algorithm Is developed for the Heterogeneous Element Processor (HEP) multiple
instruction stream computer. The classical point SOR method is not easily
vectorizable with rowwlse ordering of the grid points, but It can be effectively
parallelized on a multiple instruction stream machine without suffering in
convergence rate. The details of the implementation including restructuring of
a serial FORTRAN program and techniques needed to exploit the parallel

DDr s.n, r1473 E O rvOF ,OVsisOsOLsTE UNCLASSIFIED

SECURITY CLASSIFICATIOR OF TNIS PAGE (Whon Date Ented)

...........
-................-....... * 4 ...- 5-.L. : 5 - . -/ :- i 5: - - - 5..5- - : -:- .: : - --- : :.: : -

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PASUO9hmM E 0190

20. ABSTRACT (Continued)

. processing architectural concept of the HEP are presented "The parallelized
algorithm is analyzed in detail. The lessons learned in this study are document.
ed to provide guidelines for similar future coding since new approaches and
restructuring techniques are required for programming a multiple instruction
machine which are totally different than those required for programming an
algorithm on a vector processor. To assess the capabilities of the parallelized
algorithm, it was used to solve Laplace's equation on a rectangular field with
Dirichlet boundary conditions. Computer run times are presented which Indicate
significant speed gain over a scalar version of the code. For a moderate to
large size problemseventeen or more processes are required to make efficient
use of the parallel processing hardware. Also, to demonstrate the capability of
the algorithm for a realistic problem, a numerical solution was obtained for a
viscous incompressible fluid in a square cavity. Since point iterative relaxa-
tion schemes are at the core of many systems of elliptic as well as non-elliptic
partial differential equations occurring in engineering and scientific applica-
tions, the present study suggests the possibility of both reducing the real time
processing and increasing the scope of computational modeling.

.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGZ(Wh~fl Dots Entered)

- - *"-'.

TABLE OF CONTENTS Pg

LIST OF ILLUSTRATIONS...... .*..................... 5

11. THE HEP AND HEP FORTRAN................sooooo 8

III. ITERATIVE RELAXATION METO... oo... * *o 9

VI. IMPLEMEATION... o.*. *** *** ****** **** 18

ACKNOWLEDGEMENTS.e m o o o o o e o ~ o o o o. . o 22

REFERENCES...... o o..... ...ooo * .*...*....oo*...... 34

Accessionl For

ECTE DC TAB3I
Urc e d t1

F

-1 \ 7D ~ r i u _, -

Lit '~3 2-I3A
JUN 3

107

...............................*3'

LIST OF ILLUSTRATIONS

Figure Page

1 SIMD Versus MIMD Pipelining....................... 24

2 Uniform Mesh System for the Model Problem 25

3 Speed of First FORTRAN Version 26

4 Speed of Optimized FORTRAN Version 27

5 Speed of Version with Assembly Language Kernel 28

6 Effects of the Critical Section for Many Processes 29

7 Critical Section Removed from the Inner Loop 30

8 Speed of Four PEM Version with Assembly Language j Line Sweep... 31

7-9 Speed for Four PEM FORTRAN Version.............................. 32

10 Streamline Patterns and Stream Function Values for Flow in a
Square Cavity, Re - 0.................... 33

5

I. INTRODUCTION

In the last decade, significant progress has been made in developing
better algorithms that are used for numerical solution of partial differential
equations. Computer codes employed in many engineering applications require

. massive calculations and still use large amounts of computer resources. A
basic requirement is that the algorithm be efficient. In practical terms this
means obtaining the solution with desired accuracy using the least amount of
computer resources. A detailed discussion of improvement in various numerical
algorithms transcends the material in this report. The available computer
architecture, whether it be of the serial, vector or parallel type, tends to
influence the development of these algorithms. The advent of high performance
sixth generation computers, such as the CYBER-200 and CRAY-I series, provides
an important breakthrough for computationally demanding engineering problems.1
These supercomputers incorporate vector processing capabilities to provide the
computational power required by large scale numerical simulation. The above-
described vector processing computers employ pipeline processors. Pipelining
is a technique of decomposing a sequential operation into suboperations with
each suboperation being executed in a special dedicated segment that operates
concurrently with all other segments. The name "pipeline" implies a flow of
information analogous to an industry assembly line. It is characteristic of
pipelines that several operations progress in distinct segments at the same
time.

Vector processors are called Single Instruction Multiple Data (SIMD)
computers because one instruction causes operation on all components of one,
or a pair of vectors. Currently the most cost effective way to implement an
SIMD computer is to use pipelining. In pipelined SIMD machines the operating
units are broken into small stages with data storage in each stage. Complete
processing of a pair of operands involves the data passing sequentially
through all stages of the pipeline. Different pairs are essentially elements
of vectors being operated upon.

The Heterogenenous Element Processor (HEP), which is a parallel proces-
sor, uses pipelining to implement multiple processes. In this computer
Multiple Instruction Streams act on Multiple Data items in parallel (MIMD).
The HEP computer consists of one or more pipelined MIMD Process Execution
Modules (PEMs). The pipelining in the HEP can be summarized as follows.
Independent instructions, including operands, flow through the pipeline with
an instruction being completely executed in eight steps. Independence of
activity in successive stages of the pipeline is achieved not by processing
independent components of vectors but by alternating nstructions from
independent instruction streams in the pipeline. Figure 1 shows differences

2. R. D. Levin, "Supercomputera," Scientific Amerian, Januar, 1982, p. 118.

7

• '

between pipelined SIMD and pipelined MIMD. A detailed discussion of thearchi-
tecture and application programs on the HEP can be found in Reference 2.

The purpose of this report is to document the development of a prelimi-
nary parallelized algorithm for an iterative solution method which has proven
to be reliable and competitive for classes of linear and nonlinear, elliptic
and non-elliptic partial differential equations arising from a broad range of
scientific applications. For complex problems, the iterative solution method
to be explored on the HEP is not easily vectorizable on vector processors in
its original form, but it can be efficiently parallelized on the HEP. Since
this iterative scheme is at the core of many large scale scientific codes and
generally consumes most of the computer time, the performance of the paral-
lelized algorithm will be evaluated to give some idea of possible speed-up on
this parallel system. Also, lessons learned in programing the code on the HEP
will be documented and will provide guidelines for similar future coding.

II. THE HEP AND HEP FORTRAN

In this section, some extensions of standard FORTRAN and some intrinsic
functions will be described since they are an important part of the develop-
ment of the parallelized algorithm presented in this report. Details of
intrinsic functions and the HEP FORTRAN compiler can be found in Reference 3.
There are four types of memory in a HEP system: Program memory, register
memory, constant memory, and data memory. Program, register, and constant
memories are local to a PEM. Data memory is shared between PEMs. On a single
PEM, multiple processes (each process being a separate instruction stream)
will operate for a given job or task and share memory. Out of 128 possible
processes available on a PEM, 64 are for supervisors and 64 are for users.
Taking into account the overhead involved, it is generally safe to use a maxi-
mum of 50 user processes.

The pipelined nature of the HEP is not of particular significance to the
programmer's view of the system. The general characteristics of the HEP are
that it is a shared-memory, multiple instruction stream computer with enough
hardware support for process scheduling to allow up to three times as many
processes to be active as the actual amount of parallel hardware without
suffering any scheduling penalty. The number of instruction streams which can
be processed In parallel is a moderately complex function of the pipeline
structure but is about 10-15 per PEM for an average instruction mix. The user
can think of writing a collection of separate FORTRAN programs which will
execute together to do a calculation. In many cases a single program or
subprogram may be written and copies of It executed in parallel by severaluser processes. It is possible to create several separate instruction streamsor processes using a CREATE statement. The CREATE statement can be thought of

2. H. F. Jordan, "Experience with PipeZined MuZtipZe Instruction Streams,"
Proc. IEEE, Vol. 72, No. 1, Januar 1984, pp. 113-213.

3. REP FORTRAN 77 USER'S GUIDE, Reference Manual, Denelcor Inc., Denver,
Colorado, February' 1982.

8

p.

as the CALL statement required for a subroutine. However, control returns
immediately from a CREATE statement but the created subroutine, with a unique
copy of its local variables, is also executing simultaneously. The RETURN
statement terminates the process executing in a created subroutine.

For correct interaction among parallel operating processes, each cell in
register and data memory is assigned a full/empty state. Asynchronous vari-
ables have access to the full/empty state and are used for synchronization.
Asynchronous variables are identified by names beginning with a $ symbol and
may be of any type allowed by FORTRAN. They also adhere to implicit typing
rules of FORTRAN based on the letter which follows the $ sign. The following
properties pertaining to asynchronous variables are used for synchronizing
processes. When an asynchronous variable appears on the right hand side of an
assignment statement, it must wait for full, read and set empty, and when it
appears on the left hand side of the assignment statement it must wait for
empty, write and set full. A PURGE statement will set the state (not the
valvP) of the asynchronous variables to empty, regardless of their previous
state. The intrinsic function VALUE reads the value of an asynchronous vari-
able regardless of its state and does not change the state. The function SETE
ignores previous state and sets the state to empty. The function WAITF waits
for an asynchronous variable to be full, reads the value but does not set the
state to empty. This completes a brief review of some important features of
the HEP and HEP FORTRAN.

Ill. ITERATIVE RELAXATION METHODS

The point iterative relaxation techniques are at the heart of many
systems of elliptic and non-elliptic partial differential equations occurring
in fluid dynamics, heat transfer, nuclear and plasma physics, electric net-
works, semi-conductor device modeling, meteorology, and structural analysis.

%) Due to the large number of equations involved, usually direct methods are not
suitable in terms of storage and efficiency. For comparative study, let us
consider some iterative relaxation techniques4 which cover large classes of
problems. The computer time required for large scientific proble.Is is so
large that any increase in efficiency can represent substantial savings. As
Iterative relaxation methods represent the most time consuming part of many
large codes, we will consider a simple model problem to analyze and investi-
gate the possibilities of increasing the computational efficiency by develop-
ing algorithms which fit the architecture of the computer available. Note
that a square, or even rectangular boundary, is not required by the MIMD
algorithm to be described. It is only required that boundary values coincide
with mesh points. For illustrative purposes, consider the simple model
problem: Laplace's equation in two-dimensions with simple Dirichlet boundary
conditions.

!''fo (1)
ax2 ay2

4. R. S. Varga, Matrix Iterative Analyeis, Prentice-HaZZ, Inc., New York,
No Jereey, 1862.

9

~~~~~~. . .' . .- .. °... -... . ... -. ,.,°. . . . .. *.• .* .. .- - . -.- .o . *° °-. -- o- , ,

... .. "- -' = - - - -" " , -- -- ,- "- -- - ,,.. . . . .. .-.. . . . .-. .•.. .-.-. .-.-.-.. . . . _ _ .. *.=' . - . ,- "-*-.--.. . . . . .".. . . .",." _" "



The field is subdivided into square cells of Ax = Ay = h as shown in Figure 2.
Using central finite-difference approximations at a mesh point (Xi,Yi) Equa-
tion (1) can be written as:

4fij- f+, i-lj fi,j+l fij 1 = 0 (2)

The boundary conditions imposed are +1.0 on the left and bottom boundary and
-1.0 on the right and top boundaries.

Equation (2) can be solved iteratively for field unknowns using:

(n+1) (n) (n) (n) (n)f~ 1l/4 (fi~ + fi-~ + fi~- + fijl (3)

This is the point Jacobi method. For this particular problem the method
simply involves setting the new iterate equal to the arithmetic average of its
four neighbors. Superscript n denotes iteration level. Note that on the
right hand side we require all information from the previous iteration level.
Thus the method is highly parallelizable since we can solve for all field

. iterates simultaneously. However, it gives a slower rate of converqence com-
pared to the point Successive Over-Relaxation (SOR) method in many cases. The
point SOR method applied to the field unknowns updated in the natural rowwise
order can be represented by the following equation.

(n+1) (n) (n+1) (n) (n+1) (n)
fij =I(fi+l,j + fi-1,j + fi'j+l + fi~j- +  1-w ij(4

In Equation (4), w is a relaxation parameter used to accelerate convergence
and superscript n denotes iteration level. With w = I the method reduces to
the Gauss-Seidel iterative method. Also, for w < 1 it gives under relaxation
and for w > 1 gives over relaxation. It can be shown for many problems that
with a suitably chosen relaxation parameter, the point rowwise SOR method
gives substantially larger asymptotic rates of convergence than those for the
point Jacobi and point Gauss-Seidel iterative methods. The point SOR method
described above uses advanced (n+1) values at two neighboring points, (i-1,j)
and (ij-1). The point Jacobi method in Equation (3) is a two level equation

requiring storage of fn+1 and fn. The point SOR requires storage for only one
set of f value., which are continually overwritten until convergence is
attained. For the Dirichlet boundary conditions, if any term on the right-
hand side of Equation (4) belongs to the boundary, the corresponding term is
understood to have the prescribed boundary value. The point rowwise SOR
method of Equation (4) will be shortened to the SOR method in what follows.

10

,.. . . .. - :. .. . --. .. ' .- * ,.. .*. . .. -..... . .* -. *. ., . ,. .,..-.. *-,.-. ,-- .. .,



IV. IMPLEMENTATION

Because of its effectiveness and simplicity,the SOR method, which is fre-
quently used, is reliable and very competitive for many problems. A FORTRAN
program for the model problem on a serial computer would include the following
statements.

OMW = 1. - W
W04 = W 0.25
DO 16 J=2, JL-1
DO 18 I=2, IL-i
TF = W04 * (F(I+I,J) + F(I-1,J) + F(I,J+l) + F(I,J-1))

+ OMW * F(I,J)
ERR = ABS(TF - F(I,J))
ERRMX = AMAX1(ERRMX,ERR)
F(I,J) = TF

18 CONTINUE
16 CONTINUE

1-k

A simple procedure is used for computing the error norm, and scalar ERRMX
is used for finding the maximum error norm in the field. ERRMX is compared to
the allowable error norm for checking the convergence of the solution proce-
dure. As shown above, the SOR method can be easily implemented on a serial
machine. For complex problems, the equations used are usually more involved,
but the basic features remain essentially the same.

Now let us consider the implementation of the SOR method on vector pro-
cessing computers. As mentioned before, the convergence rate of the SOR
method depends partly upon using updated values at adjacent points while solv-
ing for a given point. Also, for vector processors, vectors must be stored
and must be available to make use of concurrency in the computer. Thus for
complex problems involving cross derivatives, the SOR method is not easy to
vectorize in its original form. However, there exists a simple system ordering
for solution of partial differential equations using a rectangular grid which
will vectorize easily. Sufficiently large vectors can be formed by associat-
ing vectors with alternate field points (red-black checkerboard pattern).

* This modified SOR is referred to as checkerboard SOR and can be effectively
implemented on vector processors. Since the evaluation of cross derivatives
is lagging one stage per iteration,the convergence rate of the checkerboard
SOR may not be as good as the SOR method,and schemes involving more than two
colors to decouple the grid have been considered by Adams and Ortega. 5 The
comparison of various vectorized relaxation schemes for some specific fluid

5. L. M. Adams and J. M. Ortega, "A MuZti-CoZo?, SOR Method for Par'aZZeZ Comp-
utation," Pr'oc. 1982 IntZ. Conf. on ParaZeZ Processing, BelZaire, MI,
Auguet 1982, pp. 53-58.

11



flow problems is reported in Reference 6. It was found that the convergence
rate of checkerboard SOR was not as good as that of the successive line over-
relaxation scheme. Also, for complex problems there exist mathematical
analyses for point SOR for finding a nearly optimum local acceleration para-

meter; however, for checkerboard SOR there is no such theory. The detailed
information about the checkerboard SOR implementation on the CYBER-200 series
vector computers for implicit finite-difference solution of incompressible
Navier-Stokes equations can be found in Reference 7. Implementation of check-
erboard SOR on a vector processor is somewhat involved. The implicit vectori-
zation option of the compiler is not of much use when implementing the check-
erboard SOR. The sequential machine SOR method will not produce any signifi-
cant improvement in speed using the implicit vectorization option on a vector
processor. The implementation on the vector processor requires development of
a system dependent algorithm and code. The procedure for handling irregular
domains on a vector processor, even though the boundary coincides with
Cartesian grid nodes and no interpolation is required for implementing bound-
ary conditions, becomes less efficient due to the increase in the bookkeeping
overhead. Frequently, the use of arbitrary coordinate transformation intro-
duced by boundary conforming coordinate systems is desired. The use of bound-
ary conforming coordinate systems, in which coordinates match the boundary,
allow all computations to be done on a fixed rectangular grid and gives a well
ordered system of algebraic equations which can efficiently use vector proces-
sors.

For the Laplace's equation, which is used as a model problem in this
study, the convergence rate of the checkerboard SOR and the SOR method is the
same. Although the checkerboard SOR is highly parallelizable, the major
thrust of this study was to develop a parallelized point iterative relaxation
algorithm for fluid flow equations involving cross derivatives. Therefore, the
SOR method with natural rowwise ordering is considered. Now let us explore
the possibility of implementing the SOR method on the HEP multiprocessor. It
has been found that the SOR method can exploit the architecture of the HEP as
effectively as it can that of serial machines; and that it can also increase
computation speed by an order of magnitude over serial machines due to
parallel processing capabilities. In the remainder of this section, we will
concentrate on the implementation of the SOR method on the HEP. Some features
of the present approach for parallelized SOR methods are as follows. Each row
(i.e., j line) is swept in sequential manner using a DO LOOP, which guarantees
that computation for a given j line at node i will not start until the compu-
tation at node i-1 is complete. This is essentially the DO LOOP 18 of the
serial machine program given above. The computations on j lines are carried
out in parallel. Let us say we use 5 parallel processes for this particular
case. One of the requirements for the SOR method is that we must use advanced
values at node i,j-1 while solving for a node i,j. This means that

6. P. F. BradZey, D. L. Dwoyer and J. C. South, 'Vectorized Schemes for
ConicaZ FZow Using the ArtificiaZ Density Method," AIAA Paper Number
84-0162, January 1984.

7. N. PateZ and J. F. Thompson, "A Vectorized Solution for IncompressibZe
Flow," AIAA Paper No. 84-1534, June 1984.

12

•.....--.-... .... .. ... - -.-- ,,.-.-."......... .-.. .. . .......... j..' . , '



computations at line j = 3 for i 5 must not start until computations at line
j = 2 for i = 5 are complete, and similarly for line j = 4 and so forth. In
this case, with the number of parallel processes equal to the number of j
field lines, the computational wave can be denoted by a diagonal line. The
FULL/EMPTY property of asynchronous variables is very useful in implementing
this requirement and guarantees the required synchronization among all proces-
ses operating in parallel. If all values in the interior of the array start
off empty but the j = 1 boundary values are full, then the synchronization is
done as follows. Of the five array values read, only the state of the (i,j-1)
element is observed by the process computing line j. Waiting for this to be
full guarantees that the new value is obtained for the (i,j-1) element stored
by the process computing line j-1. In turn, the process computing line j
stores the new (i,j) element and sets it full for use by the process computing
line j+1. All other values are read without using or changing the full/empty
state. An old (i+l,j) value and a new (i-1,j) value are guaranteed by the
sequentiality of the process computing line j. The old value at (i,j+l) is
insured because the process computing line j+1 cannot store the new (i,j+l)
value until after it has read the (i,j) value being computed by this process.
In general, each parallel process performs a rowwise relaxation sweep, and
asynchronous variables are used to produce the proper lag between parallel
processes operating on adjacent rows. As soon as the first row sweep of
parallel process #1 is complete, It will pick up the index value of the next
unswept row, waiting in line in case the number of j field lines is greater
than the number of parallel processes being used.

A sample HEP FORTRAN program is shown below to more fully illustrate the
procedu re.

DIMENSION $F(102,102)
COMMON/BLK1/ $F,$JJ,ILM1,JLMI,....
COMMON/BLK2/ $ERNM

a'

IL = 102
JL = 102
ILM1 = IL- i
JLM1 = JL - 1
IPRC = 5 (Number of parallel processes)
IPRCM1 = IPRC- 1

mI

a,

15 CONTINUE (Iteration loop)

PURGE $JJ,$NNN
$JJ a 2
$ERNM = 0.0

of

DO 1313 NN=1, IPRCM1 (Create parallel processes)
$NNN = NN
CREATE SOR ($NNN)

1313 CONTINUE

13

\:A"2.-....................................................... .. ..

" p a. -..... ' -'- .- S w, M."". ..- ' --.- "".. . . . . . . . . .. ' ";w ".". -- - -.



$NNN IPRC
CALL SOR ($NNN)
IF (ERRNRM - RESMAX) 15,23,23

23 CONTINUE
STOP
END

SUBROUTINE SOR ($NNN)
DIMENSION $F(102,102)
COMMON/BLK1/ $F,$JJ, ILMIJLMI,...
COMMON/BLK2/ $ERNM

I,

NN = $NNN
11 J = $JJ (make a local copy of row number, i.e., J line)

$JJ = J + 1
IF (J .GT. JLM1) GO TO 33

ml

W04 = W* 0.25
OMW = 1.0- W

ml

DO 22 I=2, ILMi
TF = W04 * (VALUE ($F(I+1,J)) + VALUE ($F(I-1,J))

+ VALUE ($F(IJ+1)) + $F(IJ-1))
+ OMW * VALUE ( $F(I,J))

$ERNM = AMAXI (ABS (TF - VALUE ($F(I,J)), $ERNM)
$F(I,J) TF

22 CONTINUE
GO TO 11

RETURN
END

Some comments on the right hand side are used for explanation of the
code. Note that we have to initialize some asynchronous variables before we
create five parallel processes. DO LOOP 1313 creates four processes and the
fifth parallel process is invoked using a CALL statement. Note that the loop
uses asynchronous variable $NNN which essentially passes the process number.
The use of $NNN insures that no process will be created until the previously
referenced process has obtained its process number. This approach is neces-
sary because, due to overhead involved In creating a process, the value of a
loop index might have changed by the time the created process references the
index via its argument. The subroutine SOR is written for a self scheduling
partition of the work. In self scheduling, each process uses a new value of
the asynchronous index $JJ, increments it, and refills It using a local vari-
able J. Thus a unique J line is obtained and the process proceeds with the
local value of J. The process terminates when the value of $JJ becomes
greater than JL-1. Note that $JJ was Initialized to 2. DO LOOP 22 is a row-
wise sweep and solves the governing equations. In this program five processes

14

~ . *.*,a

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~..-.. . *'',..-.-.".'.. '...... ,.. .. ........ . .. . .. .. •..... . .....- ..-.. ,.



are running in parallel. Variable $F is shared by more than one process
through a common block. Due to the basic requirement of the algorithm, to use
updated values at (i-1,j) and (ij-1), the FORTRAN statement does not use the
VALUE function for $F(i,j-1). Due to the full/empty property of asynchronous
variables, a process waits until a new value for $F(i,j-1) becomes available,
then consumes it, computes a new value of $F(i,j and sets it full to make it
available to the processes computing line j+l.

For computing an error norm, in this case, an asynchronous variable $ERNM
is used. Also it is required that no progress beyond the CALL statement can
be made until all processes are completed. This can be done by using asyn-
chronous variables and a counter to count the number of completed processes.
Note that the scheme is easily adapted to irregular boundaries having the
Cartesian grid nodes on the boundary (unequal j lines). It is only desirable
not to have the j lines too short on the average. This can be done by orient-
ing the region properly.

The above described computer program for the parallelized SOR method is
rather imprecise in the sense that it is not a copy of a working program. A
number of other issues such as boundary conditions, initialization, etc., must __

be addressed before it can be made into a working program. However, it does
give a clear picture of how the SOR method can be parallelized on the HEP.
The above described programming example shows one possible way of implementing
the algorithm on the HEP. The same algorithm can be programmed using some
other parallel programming options and techniques, depending on ease in pro-
gramming, personal choice and computer efficiency.

V. RESULTS

Some interesting results of the present study are summarized in this
section. The discussion of the results is focused on the computational speed-
up that can be achieved using a parallelized code and some techniques which
help make code efficient. In all cases 102 x 102 grid points were considered.
Excluding boundary nodes this gave a field size of 100 x 100. The scheme of
using different processes to sweep J-lines means that there are 100 pieces of
work to be divided among multiple processes on each iteration.

To evaluate performance of the parallelized SOR method on the HEP, a
similar code for a sequential machine was developed. A sequential version of
the SOR method was run on the VAX-11/780 computer with the same boundary
conditions and the same number of grid points. An error norm was defined as
the maximum change in solution between two successive iteration levels. The
error norm was compared to an acceptable tolerance. When the value of the
computed maximum error norm was equal to or less than 0.0001, the solution
procedure was stopped. The above convergence criteria was used for all compu-
tations. Since the convergence rate of the SOR method is very sensitive to
the value of acceleration parameter used, some numerical experiments were
carried out on the VAX-11/780 for finding a nearly optimum constant accelera-
tion parameter for a given problem. Computer runs were made for acceleration
parameter values from 0.1 to 1.9. It was found that the value of the nearly
optimum constant acceleration parameter which required a minimum number of
iterations for a given error tolerance was about 1.5. The value of the Z
acceleration parameter used for all runs on the HEP was 1.5. For the model

15

.. .. .

_0 I J



problem, the execution time on the VAX-11/780 was about 479 seconds, using
single precision (32 bit) option. It nust be noted that all computer runs on
the HEP were made using 64 bits. Also, the parallelized code was run on the
HEP using a single PEM unless otherwise noted.

The first version of the parallelized SOR HEP code, which was rather
crude, gave best execution time of about 52.7 seconds when using 20 parallel
processes. The variation in execution time versus the number of active paral-
lel processes is shown in Figure 3. Note that there is a sharp drop in execu-
tion time for 1 to 10 procceses, and then the curve becomes flat as the
increase in number of processes fills the execution pipeline. Next the origi-
nal code was slightly modified by looking at the number of computer instruc-
tions required for a given FORTRAN statement. Since there is no compiler
optimization option available at this stage, an attempt was made to manually
optimize the code by forcing some local variables to be held in registers
using a compiler extension. There are about 40 registers available to each
process. The use of registers instead of data memory saves some data memory
instructions and increases computational efficiency. Figure 4 shows the graph
of execution time versus active parallel processes for this version of the
code. The execution time came down to 30.4 seconds for 20 parallel processes.
When the optimization option becomes availablethese modifications will no
longer be user dependent and the compiler can take care of them. Further
optimization can be achieved by writing the inner loop (sweep across a j line)
in assembly language. This was done and gave the results shown in Figure 5.
The factor of 3.7 speedup from Figure 4 to Figure 5 is partially a result of a
slight algorithm improvement; but the factor of about three is due entirely to
the non-optimizing compiler.

The graph of Figure 4 is shown in an expanded scale in Figure 6. Note
there is a sharp rise in execution time for greater than 25 processes. This
is a result of the simple treatment of the error norm computation. The asyn-
chronous accesses to $ERNM ensure that only one process may update it at a
time. Even though only three machine instructions are required for this
update, the execution time of the loop rapidly becomes dominated by the need
for processes to pass, one at a time, through these three instructions as the
number of processes increases. This problem of so-called critical sections of
code which can be executed by only one process at a time is well known in the
field of parallel computing. The curve exhibits the form predicted by a
simple critical section model. Assume an amount T of work which can be spread
over an arbitrary number P of processes with the only parallelization cost
being a critical section of size Tc . The total work in the parallelized code

is Tp = T + PxTc,while the amount done by a single process is t T + Tc, If
work is measured in units of execution time, the best case time for execution

with P processes is Tb-aP + Tc . This can only happen when (P - 1)xT F and

it happens that a process reaches its critical section only while others are

doing useful work. When (P - 1)xTc > "F the time is dominated by that needed

for P processes to pass sequentially through their critical sections. Thus
TTb Tc + max ( (P - 1)xTc).

16

' " . . * .. ' , . ". , . -' *'77 . . °'* * . *- ... .... .. -



-P, ._ . .i - *1 - ....- i1| .

The justification for using the best case analysis is that if the paral-
lelized work is executed repetitively, as In a loop, the initial delays will
bring the processes Into best case synchronism on subsequent executions. The
maximum speedup is seen to occur for Pc processes where PcX(Pc - 1)xTc * T or,

for T> 1, Pc /7

c c

Incorporating a limitation U on the amount of parallelism actually
available in the hardware, the execution time model becomes:

TTb T + max T (P "1)XT)"

C min(PU'

The data of Figures 4 and 6 would suggest a hardware limit of -bout U = 7.5T
and a T7 375. U is estimated from the maximum speedup and t..e ratio from

C
the slope of the rising tail. The measured U is somewhat smaller than would
be expected from the HEP hardware because part of the hardware parallelism is
used to speed up a single process through instruction lookahead.

The solution is to let each process compute a local error norm for the
elements of F which it has computed and combine this local norm into a global
one as the process terminates. The code becomes:

I-o

DO 22 I=2, ILMI
if

LOCERM = AMAXI (ABS(TF - VALUE(F(I,J))), LOCERM)
$F(I,J) = TF

22 CONTINUE
GO TO 11

33 CONTINUE
$ERNM = AMAXI (LOCERM,$ERNM)

'I .

RETURN
END

This moves the critical section outside both loops and gives the results shown
in Figure 7. The best execution time was reduced to 29 seconds and the rising
tail for large numbers of processes was completely eliminated.

The discontinuities in Figure 7 can be explained in the following way.
We have 100 J lines. Therefore, when using 20 processes, the task can be
completed in 5 stages. When the number of processes divides 100 evenly, good
execution timing occurs. However, when the number of parallel processes is

17

............................................ '

k'.-.- , -. -,..--. . '..'... . '-. -. -. . ." .".-.." ..-. . .. "."..'",", - -. .-. . .". - . . . .--- ---,'.--..,.. .. ..- '



|" .

equal to 24, (which does not divide 100 evenly), 96 J lines are completed in
the first 4 stages. In the last stage, only 4 processes make use of the
computer and execution time goes up. Since process creation overhead is large
and this is done only once, by giving enough work to each process the overhead
can be made negligible relative to total execution time. Thus the parallel-
ized approachis cost effective for moderate to large size problems.

To obtain greater speed, the parallel SOR program was executed on all
four PE~s of the available HEP system. The single PEM algorithm with j line
sweep in assembly language was extended to four PE~s with timing results shown
in Figure 8. The fastest execution time was 4.5 seconds with 51 processes.
For comparison, the single PEN gave a fastest execution time of 14.1 seconds
with 17 processes. Also a version written entirely in FORTRAN was executed on
four PEMs with the results shown in Figure 9. The fastest execution time was
6.9 seconds with 76 processes compared to 29.0 seconds with 17 processes for
the single PEN FORTRAN version. Finally, to get an upper performance limit,
the full SOR iteration was coded in assembly language and achieved the fastest
execution time of 3.0 seconds with 76 processes. An often used (and misused)
figure of merit for a computer is millions of floating point operations per
second (MFLOPS). In this measure the results are:

One PEM, FORTRAN 1.8 MFLOPS
One PEN, Assembly language kernel 3.6 NFLOPS
Four PE~s, FORTRAN 7.5 NFLOPS
Four PEMs, Assembly Language j line sweep 11.5 MFLOPS
Four PENS, Assembly language iteration 17.0 MFLOPS
CDC 7600, Optimized FORTRAN 3.8 MFLOPS

The CDC 7600 rate is given for comparison. It should be noted that the entire
. inner loop fit within the instruction prefetch buffer of the COC 7600. Such a

buffer is not a factor in the HEP architecture. In more complex problems
there would be a sharp drop in the CDC 7600 rate when the inner loop size just
exceeds the prefetch buffer size. The HEP execution time for the loop will
increase linearly as the loop grows.

VI. APPLICATIONS

To assess the capability of the present algorithm, it has been applied to
the incompressible Navier-Stokes equations for the model problem of driven
flow in a rectangular cavity. The fluid motion in the driven cavity is gener-
ated by uniform translation of the upper surface of the cavity. Two-
dimensional, incompressible Navier-Stokes equations using the streamfunction i.

and vorticity w as dependent variables have been successfully used by
researchers to simulate the flow field for many applications on serial
computers. RoacheO has given a survey of the basic techniques using the

8. P. J. RcBoahe, V2Mutational Mid D oe, " He mroea PubZiaher'a,
A Zbuque-que, Me-oo, 2972.

18

............ --.- ......... ... ... *.,*..**-__, , ._ m,,, . , ,. - *-*-*- . *• . . .,,.. . -.-.- . ". :



stream function-vorticity formulation and Tuann et. al. 9 have reviewed methods
for recirculating flows.

The model problem of a driven cavity is an example of a recirculating
flow or closed streamline problem and has occupied a position of considerable
theoretical significance within the larger class of steady separated flows.
It is known that the corner singularities present in the cavity flow cause
some numerical difficulties; however, due to the local nature of these singu-
larities the global solution is not affected significantly. Because of its
geometric simplicity and the local nature of the singularities, a driven
cavity flow in rectangular coordinates provides a model problem for testing
new numerical schemes and algorithms and serves as a first step toward the
development of an algorithm for solving the flow field about arbitrary geomet-
rical boundary shapes. It is worth noting here that a channel flow with for-
ward or backward facing steps can be a good model problem. However, because
of the smaller number of numerical solutions available compared to the driven
cavity, it was decided to investigate the driven flow in a square cavity.
Previous work on this topic has been studied in detail by Burggraf. 1 0 Numeri-
cal schemes for the incompressible Navier-Stokes equations have been tested on
driven cavity flows by several investigators' 11" 6

The governing equations for the model problem are the steady, two
dimensional, laminar, Incompressible Navier-Stokes equations. The velocity
components are represented in terms of a stream function * by:

9. S. Tuann and M. D. Olson, "Review of Computing Methods for Recirculating
FZowe," J. Comput. Phys., Vol. 29, 1978, p. 1.

10. 0. R. Burggraf, "AnaZytic and Numerical Studies of the Structure of
Steady Separated Flows," J. Fluid Mech., Vol. 24, 1966, p. 113.

11. J. D. Bozeman and C. Dalton, 'WumericaZ Study of Viscous Flow in Cavity,"
J. Comput. hye., Vol. 12, 1973, p. 348.

12. S. G. Rubin and J. E. Harris, 'WumericaZ Studies of Incompressible
Viscous Flow in a Driven Cavity," NASA SP-378, 1975.

13. M. Atias, M. Wolfhtein, and M. Israeli, '"fficiency of Navier-Stokes
SoZvero," AIAA Journal, Vol. 15, 1977, p. 263.

14. D. G. Weahl and G. D. Mallison, "An Evaluation of 11pwind and Central
Differences Approxirations by a Study of Recirculating Flow," J. Computer
and Fluids, Vol. 4, 1976, p. 29.

15. K. N. Ghia, W. L. Hankey, and J. K. Hodge, 'es of Primitive Variables in
the Solution of Incompressible Navier-Stokes Equations," A1AA Journal
Vol. 17, 1979, p. 298.

16. R. Schreiber and H. B. Keller, 'Thiven Cavity Flows by Efficient Numeri-
cal Techniques," J. Comput. Phys., Vol. 49, No. 2, February 1983, p. 310.

19

* . ~ . ."



u * y (5)

v x (6)

and a vorticity is defined by:

W= U- v xx (7)y + 4x~1 yy

The dimensionless momentum equation is given by the steady vorticity transport
equation.

(uW) + (vw)y= (Wx + Wy) (8)

The Reynolds number Re is defined as Re = UL/v, with U being the velocity of
the moving wall and v being kinematic viscosity. All velocities have been
made dimensionless with respect to U; and distance% with respect to the width
L of the cavity.

The boundary conditions for this problem are that normal velocity
vanishes on all four walls; whereas, the tangential velocity is zero on three
stationary walls and is -1 on the moving wall. The differential equations are
approximated by finite-differences on a uniform mesh. Second order accurate
central differences are used for all spatial derivatives. Equations (7) and
(8) are solved using the parallelized point SOR relaxation procedure.

- The Reynolds number R = 100 was chosen as a test case because the many
numerical solutions available may be compared with the present solution. A
uniform grid of 51 x 51 is considered, giving a mesh spacing of 1/50. The
convergence criterion used is minimization of the residual for each difference
equation in the field. The residual at each grid point is examined during the
iterative process. When the maximum residual is less than the prescribed
value of 10"5, the solution is accepted as converged. The streamline plot of
R = 100 for the present algorithm is shown in Figure 1, and the plot is in
good agreement with the previously published numerical solution of Bozeman et.
al. 11 for the same Reynolds number and the same mesh spacing. Since the flow
is complex, a detailed comparison of the solution would be very lengthy. The
quantity of the maximum stream function represents a measure of the strength
of the dominant eddy inside the cavity and is a very important quantity for
quantitative comparison. The maximum value of the stream function should be
about 0.1 for the test case. The maximum value of the stream function report-
ed in Reference 10 is 0.1022, in Reference 11 is 0.10316 and in Reference 17
is 0.1026. The maximum value of stream function for the present study is
0.10123.

• 1 I?. M. Nallaswam and K. K. Pead, "On Cavity Flow at High Reynotda Number,"
J. Pluid Meh.- Vol. 79, 1977, p. 391.

20

...... " -.......................................................................... ........... ".... .



The speedup in going from one to twenty processes executing the driven
cavity code on a single PEM was 6.8. This indicates that the code was paral-
lelized nearly as effectively as that for Laplace's equation which exhibited
speedups of 7.5 and 7.2 for the optimized FORTRAN and assembly language ver-
sions, respectively. The agreement of the streamline plot with previous work
and the good speedup obtained show that speedup results can be obtained for a
real problem of physical interest running on a MIMD computer.

On four PEMs the speedup in going from one to 46 processes was 20.4.
More than 50 processes could not be used effectively since the grid size was
50 x 50 and the program was parallelized over lines of the grid. Amore compli--
cated program or larger grid size is required to remove this limit. At aReynolds number of 400 and with a 102 x 102 grid, a maximu~m speedup of 22.4 i:

was obtained. The value of the streamfunction at the center of the upstream
secondary vortex was calculated to be -.567 x 1O- in comparison with a value
of -.583 x I0- 3 obtained by Nallasamy and Krishna. 17

The major thrust of this study was to develop a relaxation algorithm in
light of parallel computer architecture. In order to obtain solutions for
realistic, complex fluid dynamic problems, an algorithm for the implicit
finite-difference solution of the Euler and Navier-Stokes equations in general
curvilinear coordinates is desired. We have also considered the unsteady
vorticity transport equation

S(u)x + _(Vw)y .r (wxx + -yy)* (9)

-- An implicit scheme has been obtained by backward-time and central-space
differencing of the derivatives. At each time step, Equation (9) is solved
iteratively using the parallized SOR algorithm. The steady state solution
obtained was the same as the one obtained using the steady vorticity transport
equation.

A parallelized algorithm has now been developed for the implicitfinite-
difference solution of the time dependent incompressible Navier-Stokes equa-
tions in general curvilinear coordinates. The governing equations are in non-
conservative form with the pressure and velocity as dependent variables. The
computer code is currently running on the HEP and the results will be shown
elsewhere.

In many applications, the implicit schemes converge faster than explicit
schemes by two to three orders of magnitude. Explicit schemes are rather

simple. However, the restriction on the time step imposed by stabilityconsid-
erations is a main disadvantage of these schemes. The high speed vector
processors have made explicit schemes competitive for many applications. An
explicit scheme can be easily vectorized since solving for the flow field
variable at an advanced time level requires only information from the previous
time step solution. Alsoentire two or three dimensional grids can beconsid-
ered as one long vector depending on I/0 and memory capability. The use of
moderate to long vectors increases computational efficiency on some vector

21

"_l ,2



processors. Shang, et. al. 18 and Smith, et. al. 19 have obtained considerable
speedup using explicit schemes on vector processors. Similar trade-offs
using explicit schemes on the parallel processor (HEP) seem possible. A
parallelized algorithm fo the compressible Euler equations is also currently
running on the HEP. At present it looks feasible to obtain an order of magni-
tude speedup over similar serial code. The parallelized algorithm is more
involved compared to the serial one, but the speed gain promises to reward the
effort.

VII. CONCLUSIONS

The results demonstrate that it is possible to obtain a speed gain of an
order of magnitude over a similar serial code using the parallelized point
rowwise SOR iterative algorithm. It has been shown that the SOR method, which
is not easily vectorizable, can be effectively parallelized in its original
rowwise form without suffering in speed. The details of the implementation
and techniques needed to make the code operate successfully on the HEP have
been presented.

It was found for the present study that 17 or more parallel processes
effectively utilized the computer architecture of a one PEM HEP. Some time
consuming sections of the computer code were identified and effectively modi-
fied to make the code efficient. For a distinct class of problems where
parallelization is more natural than vectorization, the present study suggests
the possibility of both reducing the real time processing and increasing the
scope of computational modeling. Since the code for a j line sweep is essen-
tially the same as on a serial computer, the incorporation of irregularbound-

*.-. aries is not difficult. This is in contrast to the vector computer environ-
ment where storage rearrangement or control vector management may lead to
significantly reduced performance. The specific lessons learned in this study
of the development of a parallelized iterative relaxation algorithm are also
valid for real codes of physical interest. This was exhibited by the good
speedup obtained in the driven cavity problem where the methods developed for
Laplace's equation were applied to a realistic problem.

ACKNOWLEDGEMENTS

This research was performed while the first author held an NRC - U.S.
Army Resident Research Assoclateship at the U.S. Army Ballistic Research
Laboratory. The authors wish to thank Dr. Clinton P. Frank for his help in
the assembly language version of the kernel and Mr. Charles H. Breedlove for

18. J. S. Shang, et. al., "Perfomance of a Vectorized Three-DimensionaZ
Navie,.-Stokee Code on the CRAY-1 CooMter'," AIAA Jouwnal, Vol. 8, No. 9,
September 1980.

19. R. E. Smith, et. al., "The Solution of the Three-DimeneioP za Viecous Cor-
pveesibZe Navie'-Stokee Equations on a Vector Ccwputer," Advances in
Computer Methods for Partial Differential Equations. DLCS, 1979.

22

... .... A



-his assistance in running and debugging the program. Computer support for
this work has been provided by the U.S. Army Ballistic Research Laboratory.
Thanks also to Mr. Robert Reschly, Jr. for running the CDC 7600 version of the

I code.

Ir



Ai- B INSTRUCTION OPERANDS

UNPACK STREAM 3 INSTRUCTION

A(7) B(7) INSTRUCTION FETCH

EXPONENT COMPARE STREAM 2 INSTRUCTION

A(6) B(6) OPERAND FETCH

SCALE RIGHT STREAM 1 INSTRUCTION
A(5) B(5) EXECUTION PHASE

ADD FRACTIONS STREAM 8 INSTRUCTION

A(M) B(4) EXECUTION PHASE

PACK RESULT STREAM 4 INSTRUCTION

R(1) RESULT STORE

SIMID PIPELINE MIMID PIPELINE

Figure 1. SIMD Versus MIMD Pipelining

24

.' r . . . . ' . ' .' - . '. " . • '. ' ,'. ' ,' ... . .. . .. .: . - .. ' j r € .- . . . - " • , . ' , . ". " • ".' ,. ' ,. , " . ,.' -.:,' j ' .' . .



1,7! 2,7 3,7 4,7 5,7 6,7 7,7

1,6 2,6 3,6 4,6 5,6 6,6 7,6

1,5 2,5 3,5 \ 4,5 5,5- 6,5 7,5

1,4 2,4 3,4 4,4 \ 5,4 6,4- 7,4

1,3 2,3 3,3 4,3 5,3 \ 6,3 7,3

1,2 2,2 3,2 4,2 5,2 6,2 7,2

1,1 2,1 3V 4,1 5,1 6,1 7,1

tiX

Figure 2. Uniform Mesh System for the Model Problem

25



LA-1

0 0

L

*LZ

00

o0 8

SQN0D3S NI 3 4L NOfLOJ3XJ

26



P9.

LA-

0

L

z .5-

SCGN003S NI JVILL NOUMnc8XJ

27



0

00::
C*4 0 0

SCIN03S I 34Li OL ~oO3X

282



4-1

0 4-
LY3

L.

090

saNO3S N 3V4L NO4D3X

29i



LL.

L.

C4C

SON003S.. NI04LNO~3X

30~*1



00

J.

- 39

LA-

Ln In In

SCN03 NI34LNL-3X

La~del.

31a



0

L

0 0In U
0) N

SON0Z03S NI 3 4L NOLLfl3X3

32



1.009

SSA

0.4-

0.4-

0.0-
0.0 0.2 0.4 0.6 6.8 1.0

Figure 10. Streamline Patterns and Stream Function Values
for Flow in a Square Cavity, Re *100

33



REFERENCES

1. R. D. Levin, "Supercomputers," Scientific American, January 1982, p. 118.

2. H. F. Jordan, "Experience with Pipelined Multiple Instruction Streams,"
Proc. IEEE, Vol. 72, No. 1, January 1984, pp. 113-213.

3. HEP FORTRAN 77 USER'S GUIDE, Reference Manual, Denelcor Inc., Denver,
Colorado, February 1982.

4. R. S. Varga, Matrix Iterative Analysis, Prentice-Hall Inc., New York, New
Jersey, 1962

5. L. M. Adams and J. M. Ortega, "A Multi-Color SOR Method for Parallel
Computation," Proc. 1982 Intl. Conf. on Parallel Processing, Bellaire,
MI, August 1982, pp. 53-58.

6. P. F. Bradley, D. L. Dwoyer and J. C. South, "Vectorized Schemes for
Conical Flow Using the Artificial Density Method," AIAA Paper Number 84-
0162, January 1984.

. 7. N. Patel and J. F. Thompson, "A Vectorized Solution for Incompressible
Flow," AIAA Paper No. 84-1534, June 1984.

8. P. J. Roache, "Computational Fluid Dynamics," Hermosa Publishers,
Albuquerque, New Mexico, 1972.

9. S. Tuann and M. D. Olson, "Review of Computing Methods for Recirculating
Flows," J. Comput. Phys., Vol. 29, 1978, p. 1.

10. 0. R. Burggraf, "Analytic and Numerical Studies of the Structure of
Steady Separated Flows," J. Fluid Mech., Vol. 24, 1966, p. 113.

11. J. D. Bozeman and C. Dalton, "Numerical Study of Viscous Flow in Cavity,"
J. Comput. Phys. Vol. 12, 1973, p. 348.

12. S. G. Rubin and J. E. Harris, "Numerical Studies of Incompressible
Viscous Flow in a Driven Cavity," NASA SP-378, 1975.

13. M. Atlas, M. Wolfshtein, and M. Israeli, "Efficiency of Navier-Stokes
Solvers," AIAA Journal, Vol. 15, 1977, p. 263.

14. D. G. DeVahl and G. D. Mallison, "An Evaluation of Upwind and Central
Differences Approximations by a Study of Recirculating Flow," J. Computer
and Fluids, Vol. 4, 1976, p. 29.

15. K. N. Ghla, W. L. Hankey, and J. K. Hodge, "Use of Primitive Variables in
the Solution of Incompressible Navier-Stokes Equations," AIM Journal,
Vol. 17, 1979, p. 298.

16. R. Schreiber and H. B. Keller, "Driven Cavity Flows by Efficient
Numerical Techniques," J. Comput. Phys., Vol. 49, No. 2, February 1983,
p. 310.

34

* * * * * . . ... . . . . . . . . .',i..".

S~ .* .*'.



REFERENCES (continued)

17. M. Nallasamy and K. K. Prasad, "On Cavity Flow at High Reynolds Number,"
J. Fluid Mech., Vol. 79, 1977, p. 391.

18. J. S. Shang, et. al., "Performance of a Vectorized Three-Dimensional
Navier-Stokes Code on the CRAY-i Computer," AIAA Journal, Vol. 8, No. 9,
September 1980.

19. R. E. Smith, et. al., "The Solution of the Three-Dimensional Viscous Com-
pressible Navier-Stokes Equations on a Vector Computer," Advances in
Computer Methods for Partial Differential Equations, IMACS, 1979.

I-I

I..

35

z .,

- ~r-



DISTRIBUTION LIST

No. of No. of
Copies Organization Copies Organization

12 Administrator 1 Director
Defense Technical Info enter US Army Air Mobility Research
ATTN: DTIC-DDA and Development Laboratory
Cameron Station Ames Research Center
Alexandria, VA 22314 Moffett Field, CA 94035

1 HQDA 1 Commander
DAMA-ART-M US Army Communications Research
Washington, DC 20310 and Development Command

ATTN: AMSEL-ATDD
Commander Fort Monmouth, NJ 07703
US Army Materiel Command
ATTN: AMCDRA-ST 1 Commander
5001 Eisenhower Avenue US Army Electronics Research
Alexandria, VA 22333 and Development Command

Technical Support Activity
8 Commander ATTN: AMDSD-L

Armament R&D Center Fort Monmouth, KM 07703
US Army AMCCOM
ATTN: SMCAR-TDC 2 Commander

SMCAR-TSS US Army Missile Command
SMCAR-LCA-F ATTN: AMSMI-RDK

Mr. D. Mertz (Dr. W. Walker)
Mr. E. Falkowski (Mr. R. Deep)
Mr. A. Loeb Redstone Arsenal, AL 35898
Mr. R. Kline
Mr. S. Kahn
Mr. H. Hudgins 1 Commander

Dover, NJ 07801 US Army Missile Command
ATTN: AMSMI-YDL

Commander Redstone Arsenal, AL 35898
US Army Armament, Munitions

and Chemical Command 1 Commander
ATTN: AMSMC-LEP-L US Army Tank Automotive Command
Rock Island, IL 61299 ATTN: AMSTA-TSL

Warren, MI 48090
Director
Benet Weapons Laboratory 1 Director
Armament R&D Center US Army TRADOC Systems
US Army AMCCOM Analysis Activity
ATTN: SMCAR-LCB-TL ATTN: ATAA-SL
Watervliet, NY 12189 White Sands Missile Range,

NM 88002
Commander
US Army Aviation Research and 1 Commander
Development Command US Army Research Office

ATTN: AMSAV-E P. 0. Box 12211
4300 Goodfellow Blvd Research Triangle Park,
St. Louis, MO 63120 NC 27709-2211

37.37

.'l • • • • % " ".................................................................................- .- - . • .- .
-- - - -" °" -* o" ." " " ","". "" ,° ."", , o "

•
"" 

°
" "" 

°
- "• -" 

°
" '- .• .-" ' " -" % % " % ."." "° '"°.° ".. 4 .. ° -



F--

DISTRIBUTION LIST

No. of No. of
Copies Organization Copies Organization

1 Commander 1 Commander
US Naval Air Systems Command US Army Missile Command
ATTN: AIR-604 ATTN: AMSMI-R
Washington, D. C. 20360 Redstone Arsenal, AL 35898

2 Commander 3 Director
David W. Taylor Naval Ship Argonne National Laboratory

Research and Development ATTN: Dr. E. L. Lusk
Center Dr. R. Overbeek

ATTN: Dr. S. de los Santos Dr. J. Dongarra
Mr. Stanley Gottlieb 9700 South Cass Avenue

Bethesda, Maryland 20084 Argonne, IL 60439

1 Commander 1 Denelcor, Inc.
US Naval Surface Weapons Center ATTN: Dr. B. J. Smith
ATTN: Code DK20 17000 East Ohio Place
Dahlgren, VA 22448 Aurora, CO 80012

1 Commander 1 Director
US Naval Surface Weapons Center Goodyear Aerospace Corporation
ATTN: Code R44 ATTN: D/470 (Dr. K. E. Batcher)

Dr. T. Zien 1210 Massillon Road
Silver Spring, MD 20910 Akron, OH 44315

I Commander I Director
US Naval Weapons Center IBM Thomas J. Watson Research
ATTN: Code 3433, Tech Lib Center
China Lake, CA 93555 ATTN: Dr. F. Ris

P.O. Box 218
1 Commander Yorktown Heights, NY 10598

US Army Development & Employment
Agency 2 Director

ATTN: MODE-TED-SAB Lawrence Livermore National Lab.
Fort Lewis, WA 98433 ATTN: L360 (Dr. G. Rodrique)

(Dr. G.A. Michael)
1 Commandant P.O.Box 808

US Army Infantry School Livermore, CA 94550
ATTN: ATSH-CD-CSO-OR

For Benin, G 31051 DirectorFort Benning, GA 31905 Lawrence Livermore National Lab.
AFWL/SUL ATTN: L-71 (Dr. T. S. Axelrod)1 FLSLP.O. Box 808 .:
Kirtland AFB, NM 87117 Box 808

Livermore, CA 94550
1 ACUREX Corporatlon/Aerotherm Div 3 Director

ATTN: Mr. W. S. Kobayashi Los Alamos National Laboratory
555 Clyde Avenue ATTN: MS B260 (Dr. B.L. Buzbee)
P.O. Box 7555 MS B265 (Dr. J.W. Moore)
Mountain View, CA 94039 (Dr. O.M. Lubeck)

University of Colorado P.O. Box 1663
Electrical & Computer Engr Dept 38 Los Alamos, NM 87544
ATTN: Harry A. Jordan
Boulder, CO 80309



DISTRIBUTION LIST

No. of No. of
Copies Organization Copies Organization

1 Director 1 Mississippi State University
NASA Ames Research Center Department of Applied Mathematics
NAS Projects Office ATTN: Dr. C. W. Mastin
ATTN: MS 202-1, (Dr. F.R. Bailey) Mississippi State, MS 39762
Moffett Field, CA 94035

1 New York University
Director Courant Institute Mathematical
NASA Langley Research Center Sciences
ATTN: F. C. Thames ATTN: Dr. M. H. Kalos
Hampton, VA 23365 251 Mercer Street

New York, NY 10012
Director
Oregon Graduate Center 1 Purdue University
Department of Computer Science Department of Computer Sciences

and Engineering ATTN: Dr. D. B. Gannon
ATTN: Dr. R. Babb West Lafayette, IN 47906
19600 NA Walker Road
Beaverton, OR 97006 1 Rutgers University

Department of Aerospace Engr
2 Director ATTN: Dr. D. G. Briggs

Sandia National Laboratory Piscataway, NJ 08854
ATTN: Technical Staff,

Dr. W.L. Oberkampf 1 University of Texas at Austin
Aeroballistics Division Department of Computer Sciences

5631, H.R. Vaughn ATTN: Dr. J. C. Browne
- Albuquerque, NM 87184 Austin, TX 78712

Massachusetts Institute of 1 Virginia Polytechnique Institute
Technology and State University

ATTN: Tech Library Department of Aerospace and
77 Massachusetts Avenue Ocean Engineering
Cambridge, MA 02139 ATTN: Dr. C. Lewis

Blacksburg, VA 24061
1 Virginia Polytechnic Institute

& State University
ATTN: Dr. Clark H. Lewis Aberdeen Proving Ground
Department of Aerospace & Ocean

Engineering Dir, USAMSAA
Blacksburg, VA 24061 ATTN: AMXSY-D

AMXSY-MP, H. Cohen
University of Delaware
Mechanical and Aerospace Cdr, USATECOM

Engineering Department ATTN: AMSTE-TO-F
ATTN: Dr. J. E. Danberg
Newark, DE 19711 Cdr, CRDC, AMCCOM

ATTN: SMCCR-RSP-A
Mississippi State University SMCCR-MU
Department of Aerospace Engr SMCCR-SPS-IL
ATTN: Dr. J. F. Thompson
Mississippi State, MS 39762

39.. .



USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the

reports it publishes. Your comments/answers to the items/questions below will

aid us in our efforts.

1. BRL Report Number Date of Report

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or
other area of interest for which the report will be used.)

4. How specifically, is the report being used? (Information source, design
data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far
as man-hours or dollars saved, operating costs avoided or efficiencies achieved,
etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future
reports? (Indicate changes to organization, technical content, format, etc.)

Name

CURRENT Organization

ADDRESS Address

City, State, Zip

7. If indicating a Change of Address or Address Correction, please provide the
New or Correct Address in Block 6 above and the Old or Incorrect address below.

Name

OLD Organization
ADDRESS

Address

City, State, Zip

(Remove this sheet along the perforation, fold as indicated, staple or tape
closed, and mail.)

... . .... t.q'4 .. ............... 1



.- ..- .rr.., r- .-.. ,-. -

FOLD HERE

US Army Ballistic Research Laboratory i - N1SAG

ATTN: AMXBR-OD-ST 
NESA

Aberdeen Proving Ground, MD 21005-5066 IN THE
UNITED STATES

OFFICIAL BUSINESS I

PENALTY FOR PRIVATE USE. $"O BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 12062 WASHINGTON,DC

POSTAGE WILL BE PAID BY DEPARTMENT OF THE ARMY

Director
US Army Ballistic Research Laboratory
ATTN: AMXBR-OD-ST
Aberdeen Proving Ground, MD 21005-9989

FOLD HERE

. . . . . . . . .-q 4 . . . .

. . . . . . . . . . . . . .. -



r wrwr r 
rwr - .

.'. . .

9

L

K

FILMED
b~.

6-85

I'.-

DTIC
.'. - . .

.. .......
.- ~.- 

.*~4*~ ~ 4.... .** .~................. 

....


